Skip to main content

Making lazy, stupid plants work harder

Plants with larger root systems take up minerals more easily.
Plants these days. They're coddled, entitled, fed with a silver spoon.

Use of man-made fertilizer and traditional breeding, over the years, has selected for traits that led to today's modern-variety plants that grow fat with yields.

But the downside of easy access to nutrients is that it has allowed for the breeding out of desirable traits that has left plants, well, acting like enabled, spoiled children.

"They're lazy," said plant biochemist Roberto Gaxiola, an assistant professor of cellular and molecular biosciences at Arizona State University. Because nutrients are plentiful, they don't bother with growing large root systems. Yet, he explained to me, larger root systems are needed for them to take up more phosphate and nitrogen from the soil.

More now than ever, plants depend on these fertilizers for growth. Wild crop plant varieties, on the other hand, have had to evolve in an environment of everyday nutrient scarcity. It's these wild crop plant root systems that have been the focus of Gaxiola's research for more than a decade.

Root engineering 

Gaxiola told me that these wild varieties have learned to use more efficient pathways of transporting sugars from leaves to roots. They produce larger root systems that do a better job at acidifying soil and taking up minerals like nitrogen, phosphate, potassium.

He's identified genes involved in overexpression of a type of kinase, an H+-PPase, that phosphorylates a process of loading sugar. The localization of this kinase is in cells that surround the vascular tissue, which is used to synthesize and transport sugar.

"It’s the only way that roots can grow and be active," Gaxiola told me. "You cannot grow a root if you don't move sugar from the leaves. What does this kinase regulate? It could be one of the genes, but clearly it's multifactorial. It's upregulating sugar transport for a larger root system."

Last May, Gaxiola and his colleagues published their latest of a series of papers detailing how his lab inserted genes from wild rice, tomatoes and arabidopsis into modern-yield, salt-tolerant varieties (1). These genes, as part of commercial varieties through root engineering, could lead to more efficient use of phosphorus and increase crop biomass and seed yields.

Another paper, recently published in Nature by scientists from the International Rice Research Institute, uses a similar approach (2). These scientists isolated and inserted a gene from a wild variety of rice into commercial strains to produce larger roots that better take up phosphorus, nitrogen, and potassium.

Gaxiola said, "It's interesting work. We have similar results, but with a different gene." Again, a kinase is involved that regulates synthesis of sugar for transport to the roots to become more active, grow, and take up minerals.

Phosphorus and the future

"It's a good example of how crop domestication made crop plants 'stupid' and dependent on heavy external fertilizer inputs. Their plants seem very promising indeed," said biologist James Elser, a subject of a previous post.

Elser, also an ASU professor, is raising more awareness about the need for sustainable phosphorus. His wish, he'd said to me before, is to hear "President Obama say the word 'phosphorus',"as the problem deserves serious attention.

According to Elser, plants that can more efficiently use phosphorus could end up being highly beneficial to poor people, such as in underdeveloped Asian countries. As phosphorus availability becomes depleted and costs for fertilizer rises, farmers in these countries can't afford fertilization of their rice plants. They're also hit with the fact that the roots won't take nutrients. Often the soils have the phosphates, but they're bound to the soil. The roots need to acidify the soil to release the phosphate that's bound.

Plants that efficiently use phosphorus could also reduce eutrophication. The problem is caused when fertilizer run-off enters streams, rivers, lakes, and oceans. These extra nutrients cause algae to bloom and create "dead zones," Elser said, one of the most famous examples of which is the Gulf of Mexico Dead Zone.

Hurdles of funding and anti-GM sentiment

With so much to gain from plants that can grow in phosphorus-poor soil or with less fertilizers, I had to ask Gaxiola, How close are we to seeing salt-tolerant, large-rooted plants being used commercially? Gaxiola's plants, for example, as he described, are "one of the strongest phenotypes" ever produced for the market.

"Oh, my friend," Gaxiola replied gently to my question, in a way I've found to be typical of his native Mexico City, "there are field trials, heavy investment, and then you have to pray that a company like Monsanto gets interested."

Why Monsanto? Because there are few other large biotechnology companies who could jump through the hoops required to commercialize a genetically engineered crops. It's unfortunate, Gaxiola told me, because to reduce the impact of fertilizer overuse on the environment and biodiversity, what we really need is more investment into plant engineering and more commercialization of nutrient-efficient plants.

One is led to wonder: With all it's focus on growing crops organically, is anti-GM sentiment actually hindering development of plants that could help the environment? Also, who is anti-GM sentiment helping if not only Monsanto? If only Monsanto can invest in GM? Wouldn't less regulations on GM help other biotechnology companies get in the game? These are questions worth more exploration.

References

  1. Gaxiola RA, Sanchez CA, Paez-Valencia J, Ayre BG, Elser JJ. Genetic Manipulation of a "Vacuolar" H+-PPase: From Salt Tolerance to Yield Enhancement under Phosphorus-Deficient Soils. Plant Physiol 159, 2012;3-11. doi: 10. 1104/ pp. 112. 195701
  2. Gamuyao R, Chin JH, Pariasca-Tanaka J, Pesaresi P, Catausan S, Dalid C, Slamet-Loedin I, Tecson-Mendoza EM, Wissuwa M, Heuer S. The protein kinase Pstol1 from traditional rice confers tolerance of phosphorus deficiency. Nature 488, 535–539 (23 August 2012) doi: 10.1038/nature113466

Photo credit: ASU

Comments

Popular posts from this blog

Which Photographer Are You?

To apply Plato's recommendation: If you know where you fit, in the immense range of the universe of photography, you'll have simple sledding with regards to promoting your photos.

Why? Above all else, there's nobody very like you. You have a fortune of encounters: information, know-how, and interests. In addition, you are a gifted picture taker. At the point when you know your own qualities and select your business sectors as needs be, you'll see that photobuyers like to work with picture takers whose documents of stock photographs coordinate their format needs. As it were, you communicate in their language.

Know thyself. You are a significant asset to photograph editors, in the event that you get your work done and discover the photobuyers whose photograph needs coordinate the photographs you like to take.

'Administration' PHOTOGRAPHY:

Numerous newcomers to the field of stock photography at first set their objectives toward publicizing, PR, modern, design, an…

The Impact of Single Parent Families

There is a rising pattern in families the country over. The quantity of separation procedures started is mounting and it is auspicious to discuss the effect of families on the youngsters and the organization of the family itself. As a matter of course, the nonappearance of one parent in the family structure negatively affects the connection between the parent and the kid just as their individual associations with society in general. They need to manage partiality busy working or in the network. The lower financial persona that is credited to them to make them an objective of misuse and hardships which ought not be available at all in any case.

The image doesn't become more clear concerning the youngsters. A few investigations have called attention to both present moment and long haul impacts of child rearing. Kids who come up short on the supervision of a male parent for the most part are inclined to wrongdoing, illicit drug use and resistance. A little girl in the family is boun…

What Could Be

With the beginning of each new year, it seems like everyone on the planet is either talking about or embarking on some type of resolution. I will be the first one to say that this used to be me each and every year. In almost every case, I tried to commit to something health-related like getting to the gym more or eating better. However, as time has passed, I have reflected on this annual tradition and deemed it to be quite silly in the greater scheme of things. Why should it take the passing of each new year to commit to change on both a professional and personal level? As such, I have not made nor pursued any resolution in many years.

An article by Mary Ellen Tribby in the Huffington Post sums up quite nicely why New Year’s resolutions don’t work:
As a matter of fact according to a study by The University of Scranton’s Journal of Clinical Psychology, only 39% of people in their twenties achieve their resolution goals each year.
And the number keeps decreasing with age. By the time you a…